Rescue of NMDAR-dependent synaptic plasticity in Fmr1 knock-out mice.

نویسندگان

  • C A Bostrom
  • N-M Majaess
  • K Morch
  • E White
  • B D Eadie
  • B R Christie
چکیده

Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and results from a loss of Fragile X mental retardation protein (FMRP). FMRP is important for mRNA shuttling and translational control and binds to proteins important for synaptic plasticity. Like many developmental disorders, FXS is associated with alterations in synaptic plasticity that may impair learning and memory processes in the brain. However, it remains unclear whether FMRP plays a ubiquitous role in synaptic plasticity in all brain regions. We report that a loss of FMRP leads to impairments in N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity in the dentate gyrus (DG), but not in the cornu ammonis area 1 (CA1) subregion of the hippocampus of adult mice. DG-specific deficits are accompanied by a significant reduction in NMDAR GluN1, GluN2A, and GluN2B subunit levels and reduced serine 831 GluA1 phosphorylation specifically in this region. Importantly, we demonstrate that treatment with NMDAR co-agonists (glycine or D-serine) independently rescue impairments in NMDAR-dependent synaptic plasticity in the DG of the Fragile X mental retardation 1 (Fmr1) knockout mouse. These findings implicate the NMDAR in the pathophysiology of FXS and suggest that indirect agonists of the NMDAR may be a successful therapeutic intervention in FXS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NMDA receptor-dependent LTD is required for consolidation but not acquisition of fear memory.

NMDA receptor-dependent long-term depression (NMDAR-LTD) is a form of synaptic plasticity leading to long-lasting decreases in synaptic strength. NMDAR-LTD is essential for spatial and working memory, but its role in hippocampus-dependent fear memory has yet to be determined. Induction of NMDAR-LTD requires the activation of caspase-3 by cytochrome c. Cytochrome c normally resides in mitochondr...

متن کامل

Ras signaling mechanisms underlying impaired GluR1-dependent plasticity associated with fragile X syndrome.

Fragile X syndrome, caused by the loss of FMR1 gene function and loss of fragile X mental retardation protein (FMRP), is the most commonly inherited form of mental retardation. The syndrome is characterized by associative learning deficits, reduced risk of cancer, dendritic spine dysmorphogenesis, and facial dysmorphism. However, the molecular mechanism that links loss of function of FMR1 to th...

متن کامل

Circuit and plasticity defects in the developing somatosensory cortex of FMR1 knock-out mice.

Silencing of the Fmr1 gene causes fragile X syndrome. Although defects in synaptic plasticity in the cerebral cortex have been linked to cognitive impairments in Fmr1 knock-out (ko) mice, the specific cortical circuits affected in the syndrome are unknown. Here, we investigated the development of excitatory projections in the barrel cortex of Fmr1 ko mice. In 2-week-old Fmr1 ko mice, a major as...

متن کامل

Neurobiology of Disease Deficits in Trace Fear Memory and Long-Term Potentiation in a Mouse Model for Fragile X Syndrome

Trace fear memory requires the activity of the anterior cingulate cortex (ACC) and is sensitive to attention-distracting stimuli. Fragile X syndrome is the most common form of mental retardation with many patients exhibiting attention deficits. Previous studies in fragile X mental retardation 1 (FMR1) knock-out (KO) mice, a mouse model for fragile X, focused mainly on hippocampal-dependent plas...

متن کامل

Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome.

Trace fear memory requires the activity of the anterior cingulate cortex (ACC) and is sensitive to attention-distracting stimuli. Fragile X syndrome is the most common form of mental retardation with many patients exhibiting attention deficits. Previous studies in fragile X mental retardation 1 (FMR1) knock-out (KO) mice, a mouse model for fragile X, focused mainly on hippocampal-dependent plas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 25 1  شماره 

صفحات  -

تاریخ انتشار 2015